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Abstract

This paper considers sets values of integer quadratic forms and in-

teger lattices. We start with discussing Gauss composition for integer

positive definite quadratic forms of two variables and show its equiv-

alence to the lattice multiplication. Our main goal is to generalize

this theory to quadratic forms of four variables using the structure of

quaternions.
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Introduction

The initial question is to describe the set of values of a given integer pos-
itive definite quadratic form of two integer variables? It happens that for
some forms this set can be easily described explicitly, but more frequently
one faces difficulties in finding this set. Gauss proposed an approach that
makes the answer to the question feasible. The structure of complex numbers
and lattices lie in the core of this approach. Fortunately, the skew field of
quaternions has a similar structure, and one can expect that the result of
Gauss can be generalized with their use.

The main purpose of this paper is pointing out to the existing results in
this subject and research of their generalizations. We are going to introduce
Gauss approach, give the lattice representation of the problem, and make
basic definitions and notions.

Structure of the paper. We start the paper from the general description
of the initial problem. The first section is divided into three subsections.
The first and the second subsections, mainly, present basic definitions and
notions, the third one is dedicated to the Gauss composition. In the last
section we present the main question of the research and approaches used
to deal with it. Final part summarizes the main points of the reasearch and
introduces the strategy which is expected to be helpful in achieving the goal
of the investigation.

Keywords. Integer quadratic forms, integer lattices, complex numbers,
quaternions, Gauss composition, lattice multiplication, quadratic forms of
four variables.

1 The main problem

This paper presents the results of the research dedicated to the search of the
multiplication structure on the classes of integer positive definite quadratic
forms of four variables.

1.1 Quadratic Forms

We start with giving basic definitions. The main object we are going to
work with is integer quadratic form. The integer quadratic form is a form
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f(x, y) = ax
2 + bxy + cy

2, where a, b, c ∈ Z. The discriminant of the form is
an integer number b2 − 4ac. The Gramian matrix of such form is the matrix�

a b/2
b/2 c

�
. We will write (a, b, c) instead of the form ax

2 + bxy + cy
2.

We are going to consider only positive definite quadratic forms, i.e. such
forms that for any (x, y) ∈ Z

2\(0, 0) f(x, y) > 0. The discriminant of such
forms is necessarily negative. The original question is what integer values can
we get by placing integers instead of x and y in our quadratic form f(x, y).
We will call such set the set of values.

It happens that some different forms have the same set of values. Thus
we have no reason to differ such forms, which brings us to the notion of
equivalence.

Definition 1.1. Two quadratic forms are said to be equivalent if one is
obtained from the other by an invertible integer linear change of variables,
i.e. if G2 = A

T
G1A, where G1 and G2 are the Gramian matrices of the forms,

A ∈ GL(2,Z) and detA = ±1.

1.2 Integer Lattices

Another useful way of understanding quadratic forms is representing them
as lattices in the Euclidian plane. Suppose we have the standard Euclidian
plane R2 with a standard length and inner product. Given the vector (x1, y1),
we say that its length is |(x1, y1)| =

�
x
2
1 + y

2
1 and the inner product of (x1, y1)

and (x2, y2) is �(x1, y1), (x2, y2)� = x1x2+y1y2 = |(x1, y1)||(x2, y2)|cosφ, where
φ is the angle between the vectors. Let us call the set of values of the lattice
L the set of the square lengths of the vectors from L.

Given two noncollinear vectors �u and �v on the Euclidian plane we can use
them to generate the integer lattice, which consists of all vectors m�u + n�v,
where m,n ∈ Z, i.e. of all integer linear combinations of �u and �v. Rank of the
lattice is the minimal number of vectors which span the lattice. The rank of
the described lattice is two. The following theorem shows the correspondence
between quadratic forms and integer lattices.

Theorem 1.1. For any integer positive definite quadratic form (a, b, c), there
exists a pair of vectors �u and �v in the Euclidian plane such that

��u, �u� = a, 2��u,�v� = b, ��v,�v� = c. (1)
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If, on the other hand, the coefficients of a quadratic form (a, b, c) are given by
the equations (1) for some noncollinear vectors �u and �v from the Euclidian
plane, then the form (a, b, c) is positive definite.

Proof. Note that since quadratic form (a, b, c) is positively definite looking
at its values on (1, 0) and (0, 1) we get that a and c are positive. Since the
discriminant is negative, i.e. b2−4ac < 0, we get −1 ≤ b

2
√
ac ≤ 1. Thus there

exists φ such that cosφ =
b

2
√
ac

. Let’s take vectors �u and �v of length
√
a

and
√
c and angle φ between them. Then ��u,�v� =

√
a ·

√
c · b

2
√
ac

=
b

2
. To

prove the second part note that:

ax
2 + bxy + cy

2 = �x�u+ y�v, x�u+ y�v�.

On the right hand side we have the square of the length of the vector x�u+y�v.
This number is positive for all x and y not equal simultaneously to zero.

This brings us to a very important corollary.

Corollary 1.1. The set of values of a given integer positive definite quadratic
form (a, b, c) coincides with the set of values of the lattice generated by the
vectors �v and �u, where a, b, c, u and v satisfy equations (1) from Theorem 1.1.

This corollary allows us to think about quadratic forms and their values
in terms of integer lattices and their vector lengths. Note that lattices cor-
responding to equivalent quadratic forms are isometric. There is a relation
between the area of the fundamental triangle of the lattice and the discrim-
inant of the corresponding form, which implies that two lattices with equal
areas of the fundamental triangles correspond to two quadratic forms of the
same discriminant, and vice versa. The relation it the following:

Proposition 1.1. Suppose S is the area of the fundamental triangle of the
lattice L and ∆ is the discriminant of the form (a, b, c) corresponding to that

lattice by Theorem 1. Then S
2 = −∆

16
.

Proof. Discriminant ∆ is equal to b
2 − 4ac by the definition. Let �u and �v be

the generating vectors of the lattice L and let φ be the angle between them.

Then S
2 =

1

4
|�u|2|�v|2sin2(φ) =

1

4
ac(1− b

2

4ac
) =

4ac− b
2

16
= −∆

16
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1.3 Complex Numbers

The next step of understanding the set of values of the positive definite
quadratic form is putting the corresponding lattice in the field of complex
numbers. In order to obtain a complex structure on the lattice we replace the
vectors from the Euclidian plane with the corresponding complex numbers,
i.e. a vector (x, y) ∈ R

2 turns into x + iy ∈ C. The length (resp. square
length) turns into the absolute value (resp. square absolute value), and our
integer lattice now linearly spanned by the complex numbers instead of the
vectors.

Proposition 1.2. Let (a, b, c) be a positive definite quadratic form and con-
sider the lattice L ⊂ C spanned by the complex numbers

z1 =
√
a, z2 =

b+
√
b2 − 4ac

2
√
a

.

Then such a lattice corresponds to the form (a, b, c), i.e. the set of values of
the quadratic form is equal to the set of square absolute values of the numbers
in L ⊂ C.

Proof. It is enough to check that |z1| = a, |z2| = c and cosφ =
b

2
√
ac

,

where φ is the angle between z1 and z2. Recall that a and c are positive
since the quadratic form is positive definite. That follows that

√
a is a real

number and the square of its absolutely value is a. Since b
2 − 4ac < 0,

√
b2 − 4ac = i

√
4ac− b2, thus Re(z2) =

b

2
√
a

and Im(z2) =

√
b2 − 4ac

2
√
a

.

Therefore:

|z2|2 = | b+
√
b2 − 4ac

2
√
a

|
2

=
b
2

4a
+

4ac− b
2

4a
= c

Since
√
a is a real number the angle between two given numbers is the angle

of the second with the real line. Let this angle be φ, then cosφ =
b

2
√
a√
c

=

b

2
√
ac
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1.4 Gauss Composition

Recall that the initial question was to describe the set of values of the integer
quadratic form. More precisely we are interested in the set of values of the
forms in the equivalence class, which we will call integer class. The Gauss
composition is the principal approach to answering the question. It helps
to obtain a multiplication structure on the classes of the quadratic forms of
fixed discriminant.

The multiplication, called composition, can be easily observed on the set
of values of the form. The set of values of the product of two forms is exactly
the set consisting of all pairwise products of values of the first and the second
forms. In other words, this multiplication corresponds to the actual complex
multiplication of integer lattices as subsets of C.

Definition 1.2. The product ormultiplication of two lattices L1, L2 ⊂ C, cor-
responding to the integer quadratics forms, with equal areas of fundamental
triangles is a lattice L = {z ∈ C|z = z1z2, where z1 ∈ L1 and z2 ∈ L2}.

To be correct this definition requires the following theorem to be true:

Theorem 1.2. Let L1, L2 ⊂ C be integer lattices of rank two with equal ares
of fundamental triangles. Then the set L = {z ∈ C|z = z1z2, where z1 ∈
L1 and z2 ∈ L2} ⊂ C is an integer lattice or rank two and the same square
of the fundamental triangle.

In the end of the section it will be clear why the theorem is true. The
multiplication can be expressed in terms of quadratic forms. For this purpose,
we need to define a Dirichlet pair.

Definition 1.3. Two integer positive definite quadratic forms (a,B, c) and
(a�, B, c

�) of the same discriminant ∆ are said to form a Dirichlet pair if
B

2 −∆ is divisible by 4aa�, and the numbers a and a
� are relatively prime.

Considering the fact that any two classes of integer positive definite
quadratic forms of the same discriminant contain a Dirichlet pair, the fol-
lowing theorem presents the structure of a group (with an operation called
composition) on the classes of integer positive definite quadratic forms of
fixed discriminant.

Theorem 1.3. Let the positive definite quadratic forms (a,B, c) and (a�, B, c
�)

form a Dirichlet pair. Then the composition of the classes of (a,B, c) and
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(a�, B, c
�) is the class of the quadratic form

aa
�
x
2 +Bxy +

B
2 −∆

4aa�
y
2

Proof. For the proof we need lemma from [1]. Consider the lattices L and
L
� corresponding to the forms (a,B, c) and (a�, B, c

�), which form a Dirichlet
pair. By Proposition 1.2 we may assume that L is spanned by the complex
numbers

√
a,

B +
√
∆

2
√
a

,

and L
� is spanned by the complex numbers

√
a�,

B +
√
∆

2
√
a�

.

Then the product LL� is spanned by the following complex numbers:

e11 =
√
aa�, e12 = (B +

√
∆)

√
a

2
√
a�
,

e21 = (B +
√
∆)

√
a�

2
√
a
, e22 =

B
2 + 2B

√
∆+∆

4
√
aa�

.

A priori lattice LL� can be not a rank 2 lattice. But the following lemma
states it is.

Lemma 1.1. Lattice LL
� is spanned by just two complex numbers

√
aa�,

B +
√
∆

2
√
aa�

.

See [1] for the proof. Now take the quadratic form corresponding to the

lattice spanned by
√
aa� and

B +
√
∆

2
√
aa�

. This simple exercise shows that this

form is exactly the quadratic form from Theorem 1.3.

Note that Lemma 1.1 also proves Theorem 1.2. Having such a structure
on the group of classes of quadratic forms is a great help in understanding
the set of values of a certain form. Suppose we know the set of values of
some classes of forms of fixed discriminant. Decomposing the form we are
in question into a product of other forms, we can extract information about
the new set of values, using what we know about the other forms.
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2 Direction of research

Complex numbers play an essential role in the method of the Gauss composi-
tion. An important property that they have is multiplicativity of the absolute
value, which means that |z1||z2| = |z1z2|. One can remember quaternions,
i.e. the skew field with the absolute value which is multiplicative as well. We
will recall its definition.

Definition 2.1. Quaternions H are vectors (a, b, c, d) ∈ R
4 or a set of all

linear combinations a+ bi+ cj+dk of four elements 1, i, j, k, with real coeffi-
cients with the following operations of addition and multiplication. Addition
is the same as addition of vectors in R

4. The multiplication is defined by
the following relations between 1, i, j, k and properties of distributivity and
associativity:

i
2 = j

2 = k
2 = 1, ij = −ji− k, jk = −kj = i, ki = −ik = j.

Absolute value of quaternion q = a + bi + cj + dk is defined as |q| =√
a2 + b2 + c2 + d2. One can check that |q1||q2| = |q1q2|. This leads to the

idea of using quaternions to generalize the result of Gauss.
Indeed, suppose we are interested in the set of values of the integer

quadratic form of four variables ax2+by
2+cz

2+dw
2+exy+fxz+gxw+hyz+

lyw+rwz. The corresponding lattice L is a Z-span of the set {e1, e2, e3, e4} ⊂
H ≈ R

4, given by the following relations:

||e1|| = a, ||e2|| = b, ||e3|| = c, ||e4|| = d,
�e1, e2� = e/2, �e1, e3� = f/2, �e1, e4� = g/2,
�e2, e3� = h/2, �e2, e4� = l/2, �e3, e4� = r/2.

The set of values of the form can be presented as the set of square lengths
of the vectors from L, lattice of rank 4. Two forms are called equivalent, when
one can be obtained from another by a Z-invertible change of variables. Note
that, as in case of two variables, two equivalent forms have isometric lattices
in R

4.
We call L1L2 = span

Z
{l1l2|l1 ∈ L1, l2 ∈ L2} ⊂ H the product of L1 and

L2. The question we face is whether or not it is true that the product of two
rank 4 lattices L1 and L2 is a rank 4 lattice.

Unfortunately, it turns out that it is not true for most of lattices. Our
goal is to find out for which lattices their product is a lattice of rank 4.
Here we come up with the idea of considering linear spaces over Q instead of
lattices over Z.

9



Definition 2.2. Let us call linear space L ⊂ H a quaternionic Q-space if
there exists the basis vectors q1, q2, q3, q4 ∈ H such that

L = {a1q1 + a2q2 + a3q3 + a4q4 | a1, a2, a3, a4 ∈ Q}.

Now that we have linear spaces over Q, we have to define the equivalence
relation between them.

Definition 2.3. Two quaternionic Q-spaces L1 and L2 are said to be equiv-
alent if one is obtained from the other by an invertible rational linear change
of variables, i.e. if there exists a matrix A ∈ GL(4,Q) such that AL1 = L2.

This will simplify our task of multiplication of classes but we will not be
able to differentiate some integer classes since they will merge in one.

Another strategy of dealing with the question is to weaken the definition
of multiplication of lattices.

Definition 2.4. We will say that quaternionic Q-space L ⊂ H is almost a
product of two quaternionic Q-spaces L1 and L2, if there exists a quaternion
q : |q| = 1 such that L1qL2 = L.

Note that multiplying one of the Q-spaces on the unit quaternion we
don’t change the set of values of this space. Thus it is enough for L to be
an almost a product of L1 and L2 in order to help us to answer the initial
question.

The following theorem from [4] shows that understanding Q case is very
important for further investigation of the Z case. We also introduce the proof
from [4] by A. Pakharev.

Theorem 2.1. Suppose that L1 and L2 are lattices. Then L1L2 is a rank 4
lattice ⇐⇒ (QL1)(QL2) is a quaternionic Q-space

Proof. ⇒: (QL1)(QL2) = Q(L1L2) is a quaternionic Q-space, since L1L2 is
a rank 4 lattice.

⇐: Let {ui} be a Z-basis of L1 and {vi} be a Z-basis of L2. Denote by
{wi} a Q-basis of (QL1)(QL2). uivj are in (QL1)(QL2), so there exist such
rational aijk that uivj =

�
k aijkwk. Let n be the least common multiple of

the denominators of aijk. Then L0 =
�

i wiZ/n is a Z-module of rank 4 and
a lattice, which contain L1L2 as a Z-submodule. Thus rank of L1L2 is at
most 4. But QL1L2 ⊃ L0, then L1L2 is a rank 4 lattice.

10



Now we will demonstrate usefulness of this theorem focusing on a special
case. We will consider lattices L ⊂ H, which are rank 4 sublattices of the
standard lattice:

L0 = Z+ Zi+ Zj + Zk ⊂ H.

We call L primitive if there is no integer m > 1 such that L ⊂ mZ
4.

Note that for any such L,L1 and L2: QL = QL0 and (QL1)(QL2) =
(QL0)2 = (QL0). By Theorem 2.1 that means that the product of L1 and
L2 is a lattice of rank 4. Now taking the product of primitive lattices L1 and
L2 we will take the lattice m

−1
L1L2 instead of L1L2, where m is the largest

integer, such that L1L2 ⊂ mR
4. In this part we will show a constructive

way to take product of such lattices as the subsets of H. Take a lattice
L ⊂ L0 ⊂ H and take {e1, e2, e3, e4} – the Z-basis of L. Suppose:

e1 = a11 + a12i+ a13j + a14k

e2 = a21 + a22i+ a23j + a24k

e3 = a31 + a32i+ a33j + a34k

e4 = a41 + a42i+ a43j + a44k.

We will call the matrix A:

A =





a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44





the generating matrix of L. Integer operations on the rows of the matrix
change the basis of the lattice, but preserve the lattice. Thus we can simplify
the matrix making a reduction to so-called Hermite normal form.

Definition 2.5. A non-degenerate matrix H is in Hermite normal form if
it is upper triangular with non-negative entries and the entries above the
diagonal are strictly less than the diagonal entries in the same column.

Theorem 2.2. Let L ⊂ H be the rank 4 sublattice of the standard lattice L0.
There exists unique matrix H – generating matrix of L, such that H is in
Hermite normal form.

Proof. First we prove the existence part. Take any A = (aij) – generating
matrix of L. We will show that making only integer operations on the rows of
A we can get a Hermit normal form matrix. Suppose a is the greatest common
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divisor of the first column. Then by the Euclidean algorithm making integer
operation on all four rows we can reduce the first column to the column with
all entries equal to a. Subtracting the first row from all others we get:





a a
�
12 a

�
13 a

�
14

0 a
�
22 a

�
23 a

�
24

0 a
�
32 a

�
33 a

�
34

0 a
�
42 a

�
43 a

�
44





Now make the same with the lower right corner 3× 3 matrix and at last
with the lower right corner 2× 2 matrix. We get:





a a
�
12 a

�
13 a

�
14

0 b a
��
23 a

��
24

0 0 c a
��
34

0 0 0 d





Subtracting the multiplicities of the second, third and fourth rows from
the first row we can make a

�
12, a

�
13 and a

�
14 respectively less than b, c and d.

Similarly make a��23 less than c, a��24 less than d and a
��
34 less than d. Finally

we get the Hermite normal form matrix:




a b1 c1 d1

0 b c2 d2

0 0 c d3

0 0 0 d





Now we prove the uniqueness of such generating matrix. Note that a is
the greatest common divisor of the set {Re(z)|z ∈ L}. Similarly b is the GCD
of {Re(z · i)|z ∈ L∩R

⊥}, where R⊥ is an orthogonal complement of R in H.
Finally, c = GCD({Re(z ·j)|z ∈ L∩(R+iR)⊥}) and d = GCD({Re(z ·k)|z ∈
L ∩ (R+ iR+ jR)⊥}). That means that a, b, c, d are invariantly defined and
don’t depend on the transformations of the matrix. It remains to prove that
b1, c1, c2, d1, d2, d3 are invariantly defined as well.

Suppose H = (hij) and H
� = (h�

ij) are two Hermite normal form gener-
ating matrices of L. Let h1, h2, h3, h4 and h

�
1, h

�
2, h

�
3, h

�
4 be the rows of H

and H
� respectively. Since h

�
1, h

�
2, h

�
3, h

�
4 is a basis of L then h3 = λ1h

�
1 +

λ2h
�
2 + λ3h

�
3 + λ4h

�
4. Considering that our matrices are in Hermite normal

form, we have λ1 = λ2 = 0, hence h3 = λ3h
�
3+λ4h

�
4. Since h33 = h

�
33 we get

λ3 = 1, so h3 = h
�
3 + λ4h

�
4. Thus h�

34 + λ4h
�
44 = h34 < h44 = h

�
44 ⇒ λ4 = 0.

We get that h3 = h
�
3. Similarly h2 = h

�
2 and h1 = h

�
1.

12



Now take L1 and L2 – primitive sublattices of L0. Let A and B be the
reduced (Hermite normal form) generating matrices of L1 and L2 respectively.
Let C denote the 16 × 4 matrix with the rows ai · bj, where i, j = 14 and
ai, bj are the rows of A and B respectively. We write ai · bj here, meaning
that we take qij ∈ H – the product of two quaternions corresponding to the
rows ai and bj – and write qij as a row of matrix C. By Theorem 2.1 the
rows of C span the rank 4 lattice, thus applying the Hermite reduction to
C and permuting the rows we get a new matrix, whose first four rows form
a Hermite normal form and all the other rows are zeros. Let A · B denote
the matrix formed by the first rows. This is the generating matrix of L1L2.
One should also divide A · B by the largest common divisor of its entries to
obtain the generating matrix of the the primitive product of L1 and L2.

The process described in this subsection gives a constructive way to take
primitive products of certain lattices. The next results are based on the
computer computations made with a program, which realizes this process.
We present two conjectures that were obtained experimentally.

Definition 2.6. Lattice L is periodic if there exist p ∈ Z, called period, such
that Lp = L.

Conjecture 2.1. Consider primitive rank 4 lattices L ⊂ H, which are sub-
lattices of a standard lattice L0, with one of the following reduced generating
matrices:





n 0 0 0
0 1 m 0
0 0 n 0
0 0 0 n



,





n 0 0 0
0 1 0 m

0 0 n 0
0 0 0 n



,





n 0 0 0
0 n 0 0
0 0 1 m

0 0 0 n



,

Such lattices are periodic with period 2 for all m,n such that 0 < m < n.

Conjecture 2.2. Consider primitive rank 4 lattices L ⊂ H, which are sub-
lattices of a standard lattice L0, with one of the following reduced generating
matrices:





1 m 0 0
0 n 0 0
0 0 n 0
0 0 0 n



,





1 0 m 0
0 n 0 0
0 0 n 0
0 0 0 n



,





1 0 0 m

0 n 0 0
0 0 n 0
0 0 0 n



,

Such lattices are periodic with period 2 if and only if m and n are such that
0 < m < n and any prime factor of n is not equal to 1 modulus 4.
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Conclusion

This paper presents the method of Gauss composition which denotes a struc-
ture of group on the classes of equivalence of integer positive definite quadratic
forms of two variables and fixed discriminant. This method makes the ques-
tion of describing the set of values of a given quadratic form more approach-
able.

Generalization of this method for quadratic forms of four variables is the
main goal of the research. The structure of quaternions which is similar to
the structure of complex numbers is very helpful in this endeavor, however a
straight generalization faces some obstacles. It doesn’t always happen that
the product of lattices of rank 4 is a lattice of rank 4. However we can
simplify the question in several ways.

The first way is to consider rational lattices and rational equivalence
instead of integer. The second is to multiply lattices with a correction factor,
the quaternion q of unit length, i.e. multiply L1qL2 instead of L1L2. The third
is to restrict the set of considered lattice and try to find and understand the
multiplication structures in it.

The further goal of the investigation is to describe which classes of forms
or quaternionic lattices can be multiplied.
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